Boston College researchers report developing a "nanocoax" technology that can support a highly efficient thin film solar cell. This image shows a cross section of an array of nanocoax structures, which prove to be thick enough to absorb a sufficient amount of light, yet thin enough to extract current with increased efficiency, the researchers report in the journal Physica Status Solidi. Credit: Boston College
Boston College researchers report developing a "nanocoax" technology that can support a highly
efficient thin film solar cell. This image shows a cross section of an array of nanocoax structures, which prove to be thick enough to absorb a sufficient amount of light, yet thin enough to extract current with increased efficiency, the researchers report in the journal Physica Status Solidi. Credit: Boston College
A nano-scale solar cell inspired by the coaxial cable offers greater efficiency than any previously designed nanotech thin film solar cell by resolving the "thick and thin" challenge inherent to capturing light and extracting current for solar power, Boston College researchers report in the current online edition of the journal Physica Status Solidi.
Source:
physorg